Sebuahbatang homogen AB dengan panjang 40 cm dan berat 10 N. Pada ujung batang digantung beban seberat 20 N, batang ditahan oleh tali T sehingga sistem seimbang. Sebuah balok bermassa 5 kg diletakkan diatas papan kayu yang bermassa 10 kg. Papan tersebut bertumpu pada kaki A dan C. Jika jarak beban dari kaki A 1 m dan panjang papan kayu 5 m Jadidapat kita tulis yang diketahui di soal adalah m yaitu massa batang = 4 Kg kemudian panjang batang yaitu l = 3 m di sini batang diputar melalui poros yang terletak 1 m dari salah satu ujung batang jadi air yaitu merupakan jarak benda ke sumbu putarnya yaitu 1 M Kemudian pada soal ini yang ditanyakan adalah besarnya momen inersia pada batang tersebut yaitu besarnya momen inersia disini sebagai pada soal ini kita akanmenyelesaikannya menggunakan rumus momen inersia pada batang homogen 4. ½. τ C = 80 cm.N = 0,8 m.N (arah: searah jaum jam) resultan torsi / momen gaya. Στ = 4 + 0 + 0,8 = 4,8 m.N (searah jarum jam) 4. Perhatikan gambar. Jika massa batang 2 kg. hitung momen gaya pada batang jika sistem diputar dengan poros di ujung kiri batang (F1) a. 7 mN. cash. Diketahui sebuah batang homogen yang bermassa 0,6 kg dan panjang 60 cm. Apabila gumpalan lumpur bermassa 20 gram dilempar dan menempel pada salah satu ujung batang tersebut, tentukan momen inersia sistem melalui pusat batang! Pembahasan Diketahui m = 0,6 kg l = 60 cm = 0,6 m r = 30 cm = 0,3 m ujung batang ml = 20 gram = 0,02 kg Ditanya I = …. ? Dijawab Momen inersia sistem bisa kita cari dengan melakukan perhitungan seperti berikut Jadi momen inersia sistem melalui pusat batang yaitu sebesar 1,98 x 10-2 kg m2 - Jangan lupa komentar & sarannya Email nanangnurulhidayat Kelas 11 SMAKeseimbangan dan Dinamika RotasiMomen InersiaSuatu batang homogen bermassa 4 kg dengan panjang 3 m diputar melalui poros yang terletak 1 m dari salah satu ujung batang. Momen inersia batang tersebut adalah ....Momen InersiaKeseimbangan dan Dinamika RotasiStatikaFisikaRekomendasi video solusi lainnya0223Dua bola masing-masing massa m1=4 kg dan m2=3 kg dihubung...0126Tongkat penyambung tidak bermassa dengan panjang 4 m meng...0231Katrol ditarik sehingga katrol bergerak dengan percepatan...0235Sebuah keping cakram disk memiliki momen inersia l berput...Teks videoFriend di sini ada batang yang homogen dan batangnya ini diputar dengan sumbu putarnya ini titik p yang mana titik p ini berjarak 1 m dari salah satu ujungnya Nah kita akan mencari momen inersia dari batang itu jika sumbu putarnya melalui titik P diketahui kalau batang ini makanya itu adalah m = 4 kg dan panjang yaitu adalah l = 3 m. Kemudian kita definisikan d&d ini maksudnya begini ya. Perhatikan di sini ada titik O yang merupakan titik pusat massa dari batangnya ini karena ini homogen maka titik p berada di tengah-tengah nachde ini adalah panjang yang diukur dari P ke Q itu ada gambar dapat dipahami bahwa D = Oke di soal diketahui dari sini ke sini tadi 3 meter berarti dari sini ke sini adalah 3 dibagi dua yaitu 1,5 m sehingga d nya itu adalah dari sini ke sini 1,5 dikurangi dari sini ke yaitu 1 hasilnya adalah 0,5 M jika di sini yang batangnya diputar dengan sumbu Putar berada di titik tertentu, maka momen inersia yang momen inersia nya itu dirumuskan dengan IP = 0 dibagi dengan MD kuadrat dengan IP ini adalah momen inersia pada batang itu jika sumbu putarnya berada di titik sembarang dalam hal ini di titik p yang seperti itu adapun IO Ini adalah momen inersia dari batang yang ini jika sumbu putarnya melalui titik O dan dari tabel momen inersia didapatkan bahwa ion itu adalah Mr kuadrat dibagi dengan 12 + m d. Kuadrat lalu kita masukkan saja nh4cl 3 m nya 4 dan bedanya 0,5 dan setelah dihitung hasilnya adalah 4 kg m kuadrat. Inilah besar momen inersia yang bekerja pada batang jika sumbu putarnya di titik p yang mana titik r berjarak 1 m dari ujung atau salah satu ujungnya sih jawabannya adalah yang a. Oke inilah jawabannya sampai jumpa di soal nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul Dari soal tersebut gaya-gayanya dapat diuraikan pada gambar berikut Dari soal dan gambar tersebut dapat diketahui dengan menggunakan teorema phytagoras panjang AC dapat diperoleh Ditanya Koefisien gesek kinetis? Penyelesaian Pada kesetimbangan benda tegar berlaku . Sehingga harus meninjau gaya-gaya pada sumbu x dan sumbu y serta gaya yang menyebabkan batang berputar torsi. Tinjau sumbu y Pada sumbu y berlaku . Dengan meninjau gaya-gaya yang bekerja pada sumbu y dan menggunakan persamaan Hukum I Newton maka Tinjau sumbu x Pada sumbu x berlaku . Dengan meninjau gaya-gaya yang bekerja pada sumbu x dan menggunakan persamaan Hukum I Newton maka karena berdasarkan peninjauan pada sumbu y maka Meninjau torsi yang bekerja Benda dalam keadaan setimbang sehingga . Di mana torsi dirumuskan . Dengan meninjau torsi yang bekerja pada batang maka Dengan demikian besar koefisien gesek pada lantai adalah 1,2. Jadi, jawaban yang tepat adalah B.

sebuah batang homogen bermassa 3 kg